Chapter 3 Mathematical prerequisites
3.1 Notations
3.1.1 Sets
- \(\mathbb{N}\): set of natural numbers
- \(\mathbb{R}\): set of real number
- \(\mathbb{C}\): set of imaginary number
- \(\mathbb{K}\): either \(\mathbb{R}\) or \(\mathbb{C}\)
3.1.2 Matrices
- \(0_n\) null matrix, dimension \(n\)
\(I_n\) identity matrix, dimension \(n\)
- eigen value
- eigen vectors
- trace
determinant
- close or open circle
spiral outward / inward / center
seqx <- seq(0, 1, .01)
plot(seqx, se)
3.2 Equations
3.2.1 Order 2
3.2.1.1 General equation
\[ ax^2 + bx + c = 0 \]
where \(a, b, c\) are real numbers.
3.2.1.2 Solution
\[(S) \iff x^2 + \frac{b}{a}x + \frac{c}{a} = 0\]
\[(S) \iff \left( x + \frac{b}{2a} \right)^2 - \left(\frac{b}{a}\right)^2 + \frac{c}{a} = 0\]
\[(S) \iff \left( x + \frac{b}{2a} \right)^2 - \left(\frac{b}{2a}\right)^2 + \frac{c}{a} = 0\]
\[(S) \iff \left( x + \frac{b}{2a} \right)^2 - \frac{b^2 + 4ac}{4a^2} = 0\]
\[(S) \iff \left( x + \frac{b}{2a} \right) = \pm \frac{\sqrt{b^2 + 4ac}}{2a} = 0\]
So:
\[x = \frac{-b \pm \sqrt{b^2 + 4ac}}{2a} \]
Note that \(b^2 + 4ac\) is called the discriminant.
3.2.1.3 Example: the golden ratio
Never heard about it? Have a look at the wikipedia page
So basically the golden ration verifies:
\[ \frac{b}{a+b} = \frac{a}{b} \]
which is equivalent to:
\[ b^2 - ab - a^2 = 0 \]
Let’s assume \(a = 1\) and we are looking for \(b\), solutions are then:
\[ b^2 - b - 1 = 0 \]
\[ b = \frac{1 \pm \sqrt{5}}{2} \]
The positive solution is the golden ratio!
3.3 Change of the basis
3.4 Eigen value
3.4.1 Trick in 2 D
lamda1 + lamda2 = trace lamba1 lambda2 = determinate
3.4.2 Ressources
- CHAOS A MATHEMATICAL ADVENTURE: http://www.chaos-math.org/en
- Essence of linear algebra on youtube: https://www.youtube.com/watch?v=kjBOesZCoqc&list=PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab